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Introduction. One of the main tasks of artificial intelligence is pattern recognition, which is
often reduced to determining the discriminant function parameters in the multidimensional
feature space. When recognizable objects can be completely separated by a linear dis-
criminant function, the task is reduced to the linear classifier learning. There are many
algorithms for linear classifiers learning, two of which are the Rosenblatt learning algorithm
and the Kozinets algorithm.

The purpose of the article is to investigate the properties of the Rosenblatt and Kozinets
learning algorithms on the basis of statistical experiment by the Monte Carlo method.

Methods. Two algorithms for linear classifiers learning have been studied: Rosenblatt
and Kozinets. A number of researches have been performed to compare the convergence rate
of algorithms for a different number of points and for their different location. Variation of the
iterations number of algorithms spent on samples of different sizes was analyzed.

Results. Statistical experiments have shown that for a small sample size in ap-
proximately 20% of cases the convergence rates of the Rosenblatt and Kozinets algo-
rithms are the same, but with the increase of observations number, the Kozinets learning
algorithm proved to be the absolute leader. Also, the convergence rate of the Kozinets
learning algorithm is less sensitive to the location of points in the learning sample.
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Conclusions. The higher convergence rate of the Kozinets algorithm compared to
the Rosenblatt algorithm, confirmed by a series of statistical experiments, allows formu-
lating a promising research line on the evolution of neural networks where the Kozinets
algorithm will be used to adjust the basic elements — perceptrons.

Keywords: Linear classifier, Rosenblatt algorithm, Kozinets algorithm.

INTRODUCTION

The task of learning objects recognition of different physical nature (Machine
Learning) — one of the main tasks of artificial intelligence [1-6]. Quite often it
is regarded as a problem of determining the parameters of the discriminant
function (functions) in the multidimensional feature space [7].

Linear discriminant functions deserve special attention, which, according to
[8], any Bayesian recognition strategy comes down to in probability space. It
should be borne in mind, that linear discriminant function assumes that an
increase in the values of one feature can be compensated by a decrease in the
value of another feature, which is not always true [9]. Nevertheless, linear
classifiers are widely used in solving many practical problems [9, 10].

In those cases when Nature goes to meet the designer of the application
system and in the original or transformed (straightening) feature space the
recognizable objects can be completely separated by a linear discriminant
function, the problem is reduced to the learning of a linear classifier on a finite
number of observations [8]. There are variety of linear classifiers learning al-
gorithms, two of which — the perceptron learning algorithm proposed by Frank
Rosenblatt [11] and the algorithm of B.N. Kozinets [12].

In a well-known theorem of Novikoff it is proved that the perceptron
algorithm converges for a finite number of iterations under the condition of the
objects linear separability of the training sample [13]. This theorem is much
more clearly and convincingly proved in [14]. It is this proof that is regarded as
the canonical proof of perceptron convergence. An analogous theorem on finite
convergence is proved for the Kozinets algorithm [12].

In the same time formal conditions that give an estimate of the maximum number
of iterations of these algorithms are rather rough [8]. Therefore, these estimates do not
allow an unambiguous answer to an important question: which of the algorithms and
when provides the fastest rate of convergence in the learning process for the final
sample of observations. A range of other properties of these algorithms, which are
important in solving specific practical problems are also unknown.

The purpose of the article is to investigate the properties of the Rosenblatt
and Kozinets learning algorithms on the basis of statistical experiment by the
Monte Carlo method.

LEARNING ALGORITHMS FOR LINEAR GLASSIFIERS

Before describing the proposed technology for performing a statistical experiment,
let’s consider basic principles of the Rosenblatt and Kozinets learning algorithms on
the example of recognizing two classes 7] and ¥, [11-13].
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Let the observation of the sample with the known belonging to classes is set
in N -dimensional feature space:

X =4, (5 ey 60 (1)

where n — number of elements in the sample, xﬁN )2 (x,..xy) — points

(N -dimensional vectors), and ¢; — an indicator variable such that:

+1, if x§N)eIﬁ, .
;= j=1..n. )

-1, if xMer,.

It is assumed that the observations of the classes 7} and ¥, can be
separated by a linear discriminant function

AN
D(x)=<W,X>=zWixi ) 3)
i=0

in which, for convenience, the notation <w,x> denotes the scalar product
(N +1) -dimensional vectors w= (wo,wl,...,wN) - parameters (weights) of the
discriminant function and extended vectors x = (1, x;,...xy) .

The problem is to determine the parameters vector w = (wgy,wy,...,wy ) of the

discriminant function (3) for the final training sample (1) with known values of
the indicator variable (2) , which will allow us to separate the observations of the
sample according to the scheme:

decision in favor of 17, if <w, x> >0, 4)

decision in favor of V5, if <w,x> <0. 5)

The idea of both algorithms is to implement iterative procedures which allow to
adjust some initial value of the vector w=(wg,w,,...,wy ), based on sequential
viewing of points in the training sample (1). As a result of such correction after a
certain number of iterations, the discriminant function will ensure an error-free
separation of the sample elements according to the scheme (4), (5).

The difference between learning algorithms is in the correction mechanism.

The F. Rosenblatt algorithm [11] is reduced to the implementation of such
steps (Fig. 1):

1. Arbitrarily set the initial values of the vector w®  For example, for the
two-dimensional case ( N =2) can set w® =(0,0,1).

2. The observations x’ =x™ o =1,..,n, from the training sample (1), is
selected sequentially and in accordance with (3) the values of the discriminant function

D(w(’"l),xé’),) are defined at the current value of the vector w(’_l) ,t=12,....

ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Ku6. u Bbru. Texs. 2018. Ne 2 (192) 7



L.S. Fainzilberg, N.A. Matushevych

3. An error is calculated :
NG :D(w"") x"))—c(x(’)), (6)

which is the difference between the value of the discriminant function (3) and
the known value of the indicator variable (2), which corresponds to the selected

observation x{.
4. If the current observation x” is not properly classified (fig. 1, b) the
weights vector is modified as follows:

7
w(® = D +y(5g>) NN )

where 0 <y <1 — preset correction rate (fig. 1, b).

5. Steps 2—4 are repeated until all sampling points (1) have been classified
correctly (fig. 1, ).

A theorem was proved in [13], according to which for a finite linearly
separable sample the iterations number of the Rosenblatt algorithm is limited:

2
0_0
== (3)
€
where O =max x|, &= min ‘x(N)‘ >0, here Co(X) — convex hull of the
ie[ln] xeCo(X)

set X .

In the work [12] B.N. Kozinets proposed different iterative learning
algorithm, which was later called the Kozinets algorithm.

The main idea of the algorithm is that at each step of the iteration ¢=12,... is
searched for such an observation x =x*) | a =1,...,n, from the training sample
(1), which is incorrectly classified at the current value of the parameter vector
w(™D of the discriminant separating function. If there are no such vectors for all
points of the training sample, then the algorithm completes its work.

Fig. 1. Graphic interpretation of the Rosenblatt learning algorithm
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If a vector x) is found that is incorrectly classified, then the parameter
vector is corrected as follows [8]:

W = 1=y D) w4y OO, )]
where

7/:argmin(l—y(t))-w(t_])+7/(t)-xg) . (10)

Let’s give a graphic interpretation of the Kozinets algorithm for the case
N =2, when using a straight line it is necessary to divide two sets of points on
the plane. The algorithm is reduced to performing such steps (Fig. 2, 3):

1. Two points of the training sample, belonging to different classes, are
randomly selected, and a straight line is drawn between them 4B (Fig. 2, a).

2. The parameters of the middle perpendicular W, to the segment AB

determine the initial approximation of the parameters vector w® of the
unknown discriminant function.

3. An arbitrary point M is chosen and the sign of the indicator variable (2)
determines its belonging to one of the classes. The point M connects with a
point B of the same class by line, and the perpendicular AP is gone down to
the indicated line from the point 4 of the opposite class (Fig. 2, b).

4, a. If the base of the perpendicular 4P extends beyond the straight line
BM (Fig. 2, b), then the point M determines the new position of the straight
line 4B (Fig. 1, c), with the help of which the parameters w" of the corrected
discriminant function W] are found.

4, b. If the base of the perpendicular AP lies within the segment BM
(Fig. 3, b), then the new position of the straight line 4B (and hence the
parameters w" of the corrected discriminant function #]) is determined

by point P.
Steps 1—4 are repeated until all points of the training sample (1) are properly
classified.

Fig. 2. Graphical interpretation of the Kozinets algorithm on the plane (1st case)
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Fig. 3. Graphical interpretation of the Kozinets algorithm on the plane (2nd case)

In accordance with the proved theorem [12, 14], the Kozinets algorithm
converges in a finite number of iterations
0, 9
ty £ =In=. 11
0 62 62 ( )
At first glance, comparing the estimates (8) and (11) it may seem that the
Rosenblatt algorithm always converges with a smaller number of iterations.
However, as noted in [8], the estimates (8) and (11) are rather rough, and hence
the conclusion about the superiority of the Rosenblatt algorithm on the basis of
these estimates is not valid. Therefore, it is proposed to compare the rate of
algorithms convergence based on the statistical experiment.

TECHNOLOGY OF STATISTICAL EXPERIMENT IMPLEMENTATION

Following the statistical experiment methodology [15-17], a software tool system was
developed. It makes it possible to carry out experiments to estimate the rate of
convergence of the Rosenblatt and Kozinets algorithms. Such experiments were
performed on the random data samples generated by the Monte Carlo method.

When the program starts (Fig. 4), the user is able to generate data for the
experiment (generate data) in three different ways:

o automatically (automatically with preferences);

e manually by specifying the sampling points corresponding to the

different classes on the plane (manually on the canvas);

e by loading from a file (download from file).

With a single start of the program (launching unit), sets of points of two
classes are generated, which can obviously be separated by a straight line, and
the Rosenblatt and Kozinets learning algorithms are started parallel (Fig. 5).

At the end of the experiment, the dividing lines and the histogram of the iterations
numbers spent by each algorithm are displayed (drawing the unit iteration chart).

For multiple experiments (launching multiple), a number of additional
functions are available, in particular, a histogram display of the percentage of the
iterations number spent by each algorithm in learning (drawing chart with per-
cent of the multiple iterations). This makes it possible to evaluate and compare
the probabilities of successful learning completion and thereby determine the
leader with specific system settings.
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Launching

Save dots to the file

User

<<include>>

<cextend=>
<<include>>
Manually on the canvas Number of dots
Automatically with ‘Coefficient of perceptron’

Fig. 4. Use Case diagram in UML notations

<<include==

Calculation of the
variation coefficient

Drawing dots
on canvas

<<include=>

Drawing chart with
percent of the multiple
iterations

Drawing histogram of the
multiple iterations

Fig. 5. Use Case diagram in UML notations

It is also possible to calculate the coefficient of variation of the iterations
number spent by algorithms in multiple experiments (calculation of the varia-
tion coefficient).

For illustration on Fig. 6 it is presented a sequence diagram, which explain-
ing the details of the relationships between the main units of the program: the
interface (desktop application), the point generation unit (points generation), the
drawing unit (drawing algorithm) and the algorithms of Rosenblatt (Perceptron
algorithm) and Kozinets (Kozinets algorithm).

Each time when the procedures that implement the algorithms of Rosenblatt
(Perceptron algorithm) and Kozinets (Kozinets algorithm) run, the iteration num-
bers U, and U, are calculated before the work stoppage the Rosenblatt and

Kozinets algorithms, respectively. The stopping moments determine the condition.
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<w,xj>-cj >0, j=l.n, (12)

which in accordance with (2), (4), (5) indicates that at the current value of the
parameter vector w all points of the training sample corresponding to the

classes V, and V,, are completely separated by a linear discriminant function.
Based on the comparison of numbers U, and U,, the leader in the current

experiment is determined:

The leader is the Rosenblatt algorithm, if U, <U,,
The leader is the Kozinets algorithm, if U, <U, .

Results of comparison (result of comparison) are visualized by the corre-
sponding bar chart (charts drawing).

Desktop Points Comparison Drawing Perceptron Kozinets
application genaration algorithm algorithm algorithm algorithm
i i i H T

type of generation |
(from file, manually !

or automatically)
i generation
vints -
<.____._.P ______________

points

¥

drawing

return

loop ) .
I points .
L] finding
Uy = iteration
U, 14— when
- a separation line
points was found
-
LI finding
v T U, = iteration
2 when
, a separation line
U, e > T was found
1 jcomparison U,, U,

return
return 000 | jE-mmmmmmmmmmmeeee|

result of cumparisgn
D:I charts drawing

Fig. 6. Sequence diagram
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RESULTS OF STATISTICAL EXPERIMENTS

Let’s consider some results obtained during the experimental study of the prop-
erties of the Rosenblatt and Kozinets learning algorithms on samples of random
observations linearly separable on the plane.

The first series of experiments was aimed at estimating the rate of algo-
rithms convergence for a different number of points K =10, 20, ...,200 , randomly

located on the plane. In each individual experiment, the iteration numbers

U,(K) and U,(K) were determined until the Rosenblatt and Kozinets algo-

rithms were stopped, respectively, in accordance with condition (12).
Comparison of numbers U, (K) and U, (K) made it possible to determine

the leader of a separate experiment, which divided the points for a smaller num-
ber of corrections of the discriminant function parameters. Further, the leader-
ship percentage in the series of 5000 experiments was determined (Fig. 7).

The experiments showed that in approximately 20% of cases, with K <40
of observations, both algorithms required the same number of iterations. With
the increase in the number of points, Kozinets learning algorithm was an abso-
lute leader (Fig. 7).

At the same time, even with more points in 10% of cases (in one of ten),
Rosenblatt algorithm was learned faster than the Kozinets algorithm.

The experiments also showed that the convergence rate of the Rosenblatt
algorithm depends not only on the number of points being processed, but also on
their location to each other on the plane.

%
90.00

80.00 /—/\/\
70.00 /—/

e U,(K) > U, (K)
50.00
40.00
U(K)<U,(K)
30.00 /
20.00 A\A\,\
10.00 et Sl
0.00 T T T T T T T T T T T T T T T T

T T T
10 20 30 40 50 60 70 80 S0 100110120130140150160170180190. K

Fig. 7. The graph of the percent dependence of the algorithms leadership on the number of
points: U, (K)< U, (k) — the leader is the Rosenblatt algorithm; U, (K)> U, (k) — the leader

is the Kozinets algorithm
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Fig. 8. «Simple» (left) and «difficult» (right) training samples

To illustrate this fact, let's consider the results of multiple learning experi-
ments on two samples, consisting of only three points — two points of the class

V| and one point of the class V, (Fig. 8).

The sample shown in the Fig. 8, left, turned out to be «simple» for both al-
gorithms: for the classes separation the Rosenblatt algorithm required 12 itera-
tions, and the Kozinets algorithm — only one iteration.

At the same time, when the algorithms were learned on a sample shown in
the Fig. 8, right, the convergence speeds of the algorithms differed significantly.
Kozinets algorithm coped with the problem in just two iterations, at the same
time for the Rosenblatt algorithm this sample turned out to be «difficult»: more
than 500 iterations were required to separate the points.

For this effect explanation, let's consider the dynamics of the change in the
discriminant function position in the Rosenblatt algorithm learning process for
the two samples.

In accordance with expression (7) for case with N =2 the correction of the
linear discriminant function's position

WyXp + WX + W, (13)

which occurs when the point is incorrectly classified, is reduced to three operations:

) _ . (- (1) (1)
Wy =W, Y, X, (14)
) _ .- (1) (1)
w=w T+, X, (15)
(1) _ 1, (1)
Wy, =w, +70, . (16)

where 8" — classification error.

In the process of learning on a «simple» sample, the dividing line (13) from
the initial position (Fig. 9, 1), corresponding to vector w'® =(0,0,1), gradually
changes its direction (Fig. 9, 2-5) and with a relatively small number of itera-
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tions takes the final position (Fig. 9, 6), in which the points of the training sam-
ple are correctly classified. At the same time, changes in the position of the
straight line are mainly due to a change in its slope, determined by the ratio

w /wi" | since the separation of «simple» sampling points practically does not
require the displacement of a straight line relative to the origin of coordinates,
i.e. correction of attitude w{ /wi" .

During the learning of Rosenblatt algorithm for the "difficult" sample, the
dynamics of the change in the discriminant function position is completely dif-
ferent (Fig. 10). A distinctive feature of the «difficult» sample from «simple»

consists in a significant difference in distances along the vertical Ax, = ‘xé" —x2C ‘

and horizontal Ax; = ‘xlA —xt ‘ between the points 4 and C of one class:
Axy >> Ax; . (18)

In other words, in this case the points 4 and C of one class differ substan-
tially in one of the coordinates and practically coincide in the other. This leads to
the fact that during the adjustment it is required to change not only the slope of

the discriminant function w(”/w{’ (Fig. 10, 1-3), but also its displacement
w /1w (Fig. 10, 4-9).

Therefore, on a «difficult» sample, the Rosenblatt algorithm, though con-
verging in a finite number of steps (long live the Novikoff theorem!), but the
number of such steps is large enough.

Fig. 9. Stages of the Rosenblatt algorithm learning process on a «simple» sample
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Fig. 10. Stages of the Rosenblatt algorithm learning process on a « difficult » sample

| L
PR O Y I BT T e Y

1 2 3 4 5 6 7 8 9 10 u t 1 101 201 301 401 501 601 t

Fig. 11. Dynamics of changes in the slope and displacement of a linear discrimi-
nant function on the «simple» (left) and the «difficult» (right) training samples

For illustration, the Fig. 11 shows the dynamics of changing attitudes
wl(’) / wy) and W(()t) / W;') in the learning process on «simple» (left) and «diffi-
cult» (right) samples. It is easy to see that on the «simple» sample the slope of
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the discriminant function did not practically change, while on the «difficult» one
it varied from 0 to 200 cu.

It's worth paying attention to one important difference between the learning pro-
cedures for the Rosenblatt and Kozinets algorithms. As already noted, the Kozinets
algorithm provides a search for the first incorrectly classified sampling point, which
leads to the next correction of the discriminant function's parameter vector.

Since the search for such points is carried out randomly, for the acceleration
of the learning process, it is advisable at each next stage of viewing the training
sample's points to exclude the possibility of repeatedly checking the fulfillment
of the condition (w,x,)-c, >0 of correct classification for the same observa-

tionsx, , ke[l,n].

For this purpose, an uncomplicated optimization procedure was developed.
It ensures the formation of an observations’ reduced subset for the next step in
the correction of the parameter vector. Of course, after this step is completed, a
new incorrectly classified point is searched for the entire sample of observations.

Statistical experiments showed that on average, usage of the optimization
procedure allows accelerating the convergence time of the Kozinets algorithm
more than eight times.

During the experiments execution, the analysis of number variation of spent
iterations was carried out for the Kozinets algorithm on samples of different
volumes. For this, during the multiple learning of the algorithm on a specific
sample, the Pearson’s variation coefficient was calculated [18] — the ratio of the
standard deviation of the iterations number to the average value of the iterations
number, expressed as a percentage.

The experiments showed that with increasing number K of points in the
sample, the variation coefficient of the iterations number decreases: after in-
creasing the sample size from 10 to 200 points, the variation coefficient of the
iterations number decreased by 20% (Fig. 12).

95
90
85
80
75 A
70
65
60
55
50

The variation coefficient , %

10 100 200 K
Samplesize

Fig. 12. Dependence of the iterations number variation coefficient of the Kozinets
algorithm from the sample size
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Input
Signals Summation
unit
X, w, O}ltput
signal
D
X, — 1 W, » >
: + Activation
unit
Xy ——— wy
Wo
Synaptic weights Threshold value

Fig. 13. Rosenblatt single-layer perceptron

Recall that the Rosenblatt learning algorithm suggests the principle of ad-
justing the linear discriminant function parameters (3), which structurally im-
plements the perceptron scheme (Fig. 13) — the basic element of neural net-
works [19], which are actively used to solve many applied problems [20].

It is clear that the Kozinets algorithm, in fact, offers an alternative approach
to learning the same scheme. The experimental researches that were carried out,
which confirmed the high rate of convergence of the Kozinets algorithm, allow
to hope that using of this algorithm as the learning one for the basic elements of
a neural network will increase their effectiveness. At least, the research of this
possibility is promising and will be the subject of our further investigations.

In conclusion, recall that for the learning process characteristics of neural
networks used a special term — the «learning epoch» [10], which means the
stage of the discriminant function parameters correction for a single viewing of
all points in the training sample.

It is clear that for the Kozinets learning algorithm the «learning epoch» and
the «iteration step» are the equivalent concepts. At the same time, the «learning
epoch» for the Rosenblatt algorithm consists of the corrections sequence of the
separating function parameters for a single scan of the entire sample and the
detection of each incorrectly classified observation.

Taking into account the above interpretations of terms, the comparative
analysis of the «learning epochs» number E,, E, that were spent by one and
the other algorithms on a series of randomly generated observations in the ex-
periments was carried out.

Experiments have shown that from this point of view, with the points
amount K <70 the Kozinets algorithm has an advantage, and as the points
amount K increases, the leadership percentage of the Rosenblatt algorithm in-
creases respectively (Fig. 14).
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% |

70.00

E\(K) < E,(K)

2000 pd E,(K)> E,(K)
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30.00 / \_\_\ /
20.00 / I
1/
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T

K

Fig. 14. The graph of the percent dependence of the «learning epochs» number on the observa-
tions number: £, (K) < E,(K) — the leader is the Rosenblatt algorithm; £ (K) > E,(K) —

the leader is the Kozinets algorithm

After all, the rate of the learning algorithms convergence mainly character-
izes the corrections number of the discriminant function parameters, and hence,
from this point of view, the Kozinets algorithm can be considered an uncon-
tested leader, which is illustrated by the Fig. 7.

Thus, the developed software system made it possible to establish previously
unknown properties of the Rosenblatt and Kozinets learning algorithms on the basis
of a statistical experiments series, to conduct their comparative analysis and outline
the prospects for further research on the improvement of neural networks.

CONCLUSIONS

Statistical experiments carried out using the developed software system have
shown that for a small sample size the convergence rates of the Rosenblatt and
Kozinets algorithms are the same in approximately 20% of cases. With the in-
crease in the number of observations, the Kozinets learning algorithm proved to
be the absolute leader and, with a K >100 number of observations, it learned
faster than the Rosenblatt algorithm in 90% of the cases.

The convergence rate of the Kozinets learning algorithm is less sensitive to
the points location in the training sample and with the increase in the observa-
tions number of the variation coefficient, the iterations number decreases.

The higher convergence rate of the Kozinets algorithm compared to the Rosen-
blatt algorithm, confirmed by a series of statistical experiments, allows formulating a
promising line of research on the evolution of neural networks in which the Kozinets
algorithm will be used to adjust the basic elements — perceptrons.
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! MixHapouuit HayKoBO-HaBUATBHHI IEHTp iH(pOpMAIIiHHIX

texHoJorii ta cucteM HAH Vkpainu ta MOH Ykpainu,

?p. AganeMiKa Fnyunfmsa, 40, M. Kuis, 03187,“Vl<pa’1'Ha
HarionanpHuii TEXHIYHUI YHIBEPCUTET Y KpaiHU

«KuiBcbkuii mositexHiuHui iHCTUTYT iMeHi Irops Cikopcbkoroy,

mp. [Tepemorn, 37, Kuis, 03056, Ykpaina

MOPIBHAJIBHA OLIHKA HIBUAKOCTI 3BDKHOCTI AJITOPUTMIB
HABYAHHS JITHIMHUX KJIIACUDIKATOPIB 3A METOJJOM
CTATUCTUYHOI'O EKCIIEPUMEHTY

PosrmsiHyTo anroputmu JiHilHOI Kiacudikanii @. Pozendnata Ta b.H. Ko3unus. Ilposeneno
EKCIIepUMEHTAJIbHI JOCTIHKEHHS 301KHOCTI aITOPUTMIB Ha pi3HHUX BHOiIpKax jaHux. HaBeneHo
PE3yIbTaTH CTATUCTUYHUX €KCIIEPHMEHTIB IS OLIHIOBAHHS IIBUIKOCTI 30DKHOCTI allrOpUTMIB
Kosunist ta Po3en6mnara, 3aJie)KHOCTI pe3ysIbTaTiB Bijl pO3TalllyBaHHS €JIECMEHTIB B BHOIpIIi Ta
Bapiallii KIIbKOCTI iTepawiil anropuT™iB IiJ 4ac HaBYaHHS Ha BUOIpKax pi3HOro o0cAry.
Binbma mBuaKicTh 301HOCTI anroputMmy KosiHna y mopiBHAHHI 3 anroputMom Po3eHo-
JIaTTa, IO MiATBEPAXKEHO CEePiMH MPOBEACHUX CTATUCTUYHUX €KCIIEPHUMEHTIB, JO3BOJIsE cho-
PMYJTIIOBAaTH MEPCIEKTHBHMII HANPSAMOK JOCITIIKEHb 3 PO3BHUTKY HEHPOHHUX MEpEeXK, B SIKHX
anroput™ KosiHna Oyae BUKOPHUCTaHO I HACTPOMKK 6a30BHX €JIEMEHTIB — MEPCEHTPOHOB. .

Knwuoei cnoea: ninitinuii knacughixamop, anreopumm Pozenbnama, anreopumm Kosunys,
nepcenmpon.
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? HauuoHAa b HbIH TeXHHYECKHUIT YHHUBEPCUTET Y KpauHbI

«KuneBcknii MOMUTEXHUIECKIA HHCTUTYT UMeHH Uropst CHKOPCKOTOY,
np. [Tobexpl, 37, Kues, 03056, Ykpauna

CPABHUTEJIBHA S OLIEHKA CKOPOCTU CXOAUMOCTHU
AJITOPUTMOB OBYYEHHS JTUHENHBIX KITACCU®UKATOPOB
METOJOM CTATUCTUYECKOI'O OKCIIEPUMEHTA

Beeodenue. OnHoit U3 ITABHBIX 33/1a4 HCKYCCTBEHHOTO MHTEIUIEKTA SBJIETCS Paclio3HaBaHIe o0pa-
30B, KOTOPOE JIOBOJILHO YacTO CBOJUTCS K OHPEIEICHHIO TapaMeTpOB TUCKPUMHHAHTHON (QyHKIMH
B MHOTOMEPHOM IPOCTpaHCTBE NpH3HAKOB. Korma pacriozHaBaeMble 0OBEKTHI MOTYT OBITh MOTHOC-
TBIO Pa3/ielIeHbl IMHEHHON AUCKPUMUHAHTHOHN (hYHKLIMEH, 3a1aua CBOUTCS K OOYHIEHHIO JIMHEHHO-
ro kmaccuduxaropa. CymecTByeT MHOXECTBO AITOPUTMOB OOydeHHs JIMHEWHBIX KIIACCH(HKATO-
POB, J1Ba U3 KOTOPBIX — alIroput™ o0yueHus PosenOnarra u anroputm Kosunna.

ILlenv cmambu — ¥cCenOBaTh CBOMCTBA aNrOPUTMOB 00ydeHns Poszenbmarra n Kosu-
HIIa HA OCHOBE NPOBEJCHUS CTATUCTHUECKOTO dKCIIepIMeHTa MeToioM MonTte-Kapio.

Memoowi. ViccnenoBaHbl IBa aNTOpHTMa OOYYEHMS IHHEHHBIX KIACCH(HKATOPOB:
Pozen6narra u Kosunua. IIpoBeneH psiz ucciea0BaHUM AT CPaBHEHUS] CKOPOCTH CXOAUMOC-
TH aJTOPUTMOB TIPH Pa3IIMIHOM UHCIIE TOYEK M X pacrmoioxeHuH. [IpoaHanmsmpoBaHa Ba-
pHaIys KOJIUIECTBA 3aTPaueHHbIX UTEPALlUi alrOpUTMaMH Ha BEIOOPKaX pa3HOro o0bema.

Pezynemamer. DKcriepuMeHTAIbHBIC HCCIEIOBAHIS MO3BONMIN ONPEIENNTh, YTO TIPH
MajioM o0beMe BBIOOPKH Mpubau3uTensHo B 20 % ciydaeB CKOPOCTH CXOAUMOCTHU alrOpHUT-
MoB PozenOnarra m KosWHIIa OAMHAKOBBL, HO C YBEIHYCHHEM KOIHMYECTBA HAONIONEHHMI
anroput™ obOyueHust KosuHiia okaspiBajcss aOCOMIOTHBIM JTHIAEPOM. Takke CKOPOCTh CXOIH-
MOCTH anroputMa oOydeHns Ko3nHIla MeHee WyBCTBHTENIbHA K PACIIONOKEHHIO TOYEK B
o0yuaro1eil BEIOOpKe.

Bu1soout. Bonee BBICOKas CKOPOCTh CXOAUMOCTH anroputMa Ko3wHIa mo cpaBHEHHIO ¢
anroputMoM Po3eHOnaTTa, MOATBEP)KICHHAS CEPUSMHU IIPOBEICHHBIX CTATHCTHYECKUX JKC-
MIEPHMEHTOB, IT03BOJIAET CHOPMYIHPOBATH IIEPCIIEKTUBHOE HATPaBJICHHE HCCIEAOBAHMIA 11O
Pa3BUTHIO HEHPOHHBIX ceTell, B KOTOPHIX anroput™M Kos3wHIAa OyneT MCIONB30BaH IS Ha-
CTpOHKH 6a30BBIX 3JIEMEHTOB — IIEPCENTPOHOB.

Kniouesvie crnosa: iunetinwlii knaccugurxamop, areopumm Pozenbramma, areopumm Kosunya,
nepcenmpoH.
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